Math 1A, Fall 2010 - M. Christ
 First Midterm Practice Exam

(1a) Use limit rules to evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$.
(1b) Let $f(x)=\sqrt{x}$, with its natural domain. Does $f^{\prime}(9)$ exist? Justify your answer.
(2a) Let $f(x)=\frac{(x-2)(x-4)(x-8)}{3(x-1)(x-3)(x-8)}$, with its natural domain. Find all asymptotes of the graph of f.
(2b) Find $\lim _{x \rightarrow 0} x^{2} \sin \left(e^{1 / x}\right)$. Justify your answer, using methods taught in this course.
(3) Show that there is at least one real number x which satisfies $x^{6}=1+\sin (x)$.
(4a) Let $r>0$. How is $\log _{r}(2)$ defined?
(4b) Let $f(x)=\tan (x)$ with domain $\left(-\frac{\pi}{2}, 0\right)$. Does f have an inverse? If so, what are the domain and range of the inverse function?
(4c) If some vertical line intersects a curve at more than one point, what does this say about the curve?
(4d) Simplify: $\ln (5 e \sqrt{x})$, assuming that $x>0$.
(4e) If the domain of f contains $(-1,1)$, and if f is continuous at 0 , must $f^{\prime}(0)$ exist? Either explain in words why it must exist, or give an example of a function for which it does not exist.
(5a) Let $f(x)=x^{2}$. Find $\delta>0$ such that $|f(x)-36|<\frac{1}{1000}$ whenever $|x-6|<\delta$.
(5b) Show, using the definition of a limit, that

$$
\lim _{x \rightarrow \frac{1}{3}}\left(9 x-\frac{1}{x}\right)=0
$$

Solutions to all problems will be posted, but I recommend that you first attempt to work the problems, before peeking at the official solutions. Compare your work with mine. In case of large discrepancies, consult your GSI.

